Blacksburg Math Circle Problems on Last Digits and Remainders 11/5/2016

1. What is the last digit of 777^{777} ?
2. What is the last digit of $2^{1999}+3^{2000}$?
3. Find the remainder when 5 is divided into $19^{2005}-21^{23}$.
4. Find the last 4 digits of 2016^{2016}.
5. Find the remainder when the number 3^{1989} is divided by 7 .
6. Prove that $2222^{5555}+5555^{2222}$ is divisible by 7 .
7. If it is known that $a+1$ is divisible by 3 , prove that $4+7 a$ is divisible by 3
8. It is known that $2+a$ and $35-b$ are divisible by 11 . Prove that $a+b$ is divisible by 11 .
9. Show that 3 divides a number if and only if it divides the sum of its digits.
10. Prove that $n^{5}+4 n$ is divisible by 5 for any integer n.
11. Prove that $n^{3}-n$ is divisible by 6 for any integer n.
12. Prove that $n^{3}-n$ is divisible by 24 for any odd n.
13. Given natural numbers a, b and c such that $a+b+c$ is divisible by 6 , prove that $a^{3}+b^{3}+c^{3}$ is also divisible by 6 .
