Blacksburg Math Circle Problems on Last Digits and Remainders 11/5/2016

- 1. What is the last digit of 777^{777} ?
- 2. What is the last digit of $2^{1999} + 3^{2000}$?
- 3. Find the remainder when 5 is divided into $19^{2005} 21^{23}$.
- 4. Find the last 4 digits of 2016^{2016} .
- 5. Find the remainder when the number 3^{1989} is divided by 7.
- 6. Prove that $2222^{5555} + 5555^{2222}$ is divisible by 7.
- 7. If it is known that a + 1 is divisible by 3, prove that 4 + 7a is divisible by 3
- 8. It is known that 2 + a and 35 b are divisible by 11. Prove that a + b is divisible by 11.
- 9. Show that 3 divides a number if and only if it divides the sum of its digits.
- 10. Prove that $n^5 + 4n$ is divisible by 5 for any integer n.
- 11. Prove that $n^3 n$ is divisible by 6 for any integer n.
- 12. Prove that $n^3 n$ is divisible by 24 for any odd n.
- 13. Given natural numbers a, b and c such that a + b + c is divisible by 6, prove that $a^3 + b^3 + c^3$ is also divisible by 6.